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Exits in second-order nonhn~ systems driven by dichotomous noise
i
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A8STRACT:We cOnsider a wide class Of lightly damped second-order differential equations
withdouble-wellpOtential and small coin-toss square wave dichotomous noise. The behavior
of these syetems is similar tO that of their harmonically or quaaiperiodlcally driven
counterparts:depending upon the system parameters the eteady-state motion in confined to
one well for all time or experiences exits from the wells. Tbie similarity suggests the
applicationtO the stochastic systems of a Melnikov-baaed approach originally developed
for deterministic systems. This approach accom+oodateaboth additive and multiplicative
noise.It yields a generalizedMelnikov function which is used to obtain (i) a vary useful
simplecondition guaranteeing the non-occurrence of exits from a well, and (ii) very weak
lowerbounds for the mean tima of exit from a wall and for the probability that exl.tswill
not occur during a apecified tima interval.

1. INTRODUCTION ‘
‘\

Numerous studies have baan devoted,
especiallyin the laet decade, to dynamical
systemsdriven by dichotomous noise, which
ischaracterizedprimarily by whether it is
“on” or “off,” or whather it is “up* or
“down” (Cohen 1962: Kitahara et al. 1980;
Sancho 1984; Behn and Schiele 1989;
Janeczko and I?ajnryb 1989; L’Heureux,
Kspraland Bar-Eli 1989; Irwin, Fraser and
Kapral1990; Kspral and Fraser 1993; PorrA,
14aaoliverand Lindanbarg 1993; L’Haureux
1993). One example are eysteme whare the
excitation excaeda or doee not exceed a
epecifiedthreehold— eituatione described
as “on” and “off,” respectively. To our
knowledge,analyticalprocedures applicable
to systems driven by dichotomous noise are
available only for dynemicel eystems that
are linear or of first order, or that can
be reduced to a linear or first-order
system.
In thie note we coneider a class of

nonlinear, sacond-order differantial
equationsperturbed by a damping term and
dichotomousnoiea, We present a Melnikov-
based procedure which, given a eet of
system paremetera, can establish whether
exits from a potential well are possible.
If 0Xit8 can occur, che procedure can be

used to obtain lower bounds for the mean
axit time and the probability that exits

2nd International Conference
Mechanics, June 13-15, 1994,
1995 .................

will not occur during a epecifif~dtime
interwal.
The Lhtffingequation belonge to our class

of systems, and is considered here for
specificity.We assuma that the dichotomous
noise is of the coin-toss squars wuva typa
(Cohen 1963, PorrA et al. 1993).
The noise may be represented, to any

desired approximation, by a stochastic
process consisting of the sum of N harmonic
terms with random parameters, where N is
finite, albait large. Examplea of similar
repreeentations of various typee of noise
are available in Shinozuka (1971) and Frey
and Simiu (1993a).This representationneed
not be carried out explicitly, but can ba
iiwoked to show that tha system driven by
the approximating stochastic proceaiemayba
suepended in an extended phase #pace of
dimension N+2, in which it ia autonomous
(Beigie, Lsonard and Wigging 1991, Wiggins
1992, Frey and Simiu 1993b). Under certain
conditions, tha saddle point of the
integrable system persists uncler
perturbation in a slice throl~gh the
extendad phase space. However, the stable
and unstable manifolds emanating from the
persisting saddle point no longer coincide,
as they do on the homoclinic orbits of the
unperturbed system. The distance between
the stable and unstable manifolds of the
perturbed system 19 prnpertional. to first
order, to tha generalizedMelnikov function
(GMF). By virtue of tha Smale--Birkhoff
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theorem, the necessery condition for the
occurrence of chaos (i.e., the necessary
condition for the largest Lyapounov
exponent to be positive or, equivalently,
for the system to be sensitive to initial
conditions) is that the GMF have simple
zeros. In that case the etable and unstable
manifolds intersect an Infinite number of
times and form lobes, hy which chaotic
transport between wells is effected. No
chaotic transport into a well can occur
unless the GMF has simple zeros (Wiggins
1992; Frey and Simiu 1993b). Moreover, for
relatively high damping-to-forcing ratioe,
the time needed for a particle to cross a
pseudeseparatrix is on the averaga equal,
to within a factor of order one, to the
time batwaen succesaiva zaros with positive
slope of the GMF. This observation allows
the estimation of a weak lower bound to the
mean time of exit from a well (Simiu and
Frey 1994). To assess the weakneaa of the
lower bound an analytical expression is
&rived for the ralation between a similar
lower bound and the maan exit time for the
case of excitation by white noise.
Section 2 describes the clasa of syeteme

to which our approach is explicable, and
the noise process. Section 3 describes the
generalizedt4elnikovfunction (GMF) inducad
by the noise process. It discusses (i) a
GI.iF-basedcriterion guaranteeing the non-
occurrence of exits, and (ii) lower bounds
for tha mean exit time and the probability
of no exits during a apecifiad time.
Section 4 includes results of numerical
simulation for non-chaotic and chaotic
stochastic motions, which furthar
illustrate the usefulness of the necessary
condition for the occurrence of chaos,
Section 5 preeents our conclusions.

2. DYNAMICAL SYSTEMS AND NOISE DESCRIPTION

2.1 Dynamical syateme

Tha dynamical eystems ara described by the
equation

~ - -v’(x) + c[@(t) - #i] (1)

where 6<1 and V(x) is a potential function.
The aaaumptions concerning the unperturbed
system (6-0) ara: (i) the unperturbed
equetions are integrable; (ii) the
potential V(x) has the shape of a double
well , and che unperturbed .syscem has three

fixed points: twO Centers (one et the
bottom of each wall), and a saddle point at
the top of the barrier between the two
wells; and (iii) the saddle point is
connected to itself by homoclinic orbits.

For specificity we consider the caae of
the Duffing equation with potential

V(x)-x4/4-xz/2 (2)

2.2 Noise description

Tha expression for the dichotomous coin-
toss square-wave noise is

G(t)- ~ [a+(n-l)]to<=(a+n)to, (3)

where n - ..,-2,-1,0,1,2,.. is tha aet of
integers, a is a random variable uniformly
distributed between O and 1, ~ are
independent random variables t“hattake on
the values -1 and 1 with probabilities 1/2
and 1/2, respectively, and to is a
parameter of the process G(t).
Note that tha process G(t) may be

represented in terms of Heaviside
functions. Therefore, G(t) can be
approximated arbitrarily closely by
substituting for the Heaviside functions

appropriate well-behaved functions, e.g.,
functions of the type

~ - 1/2+(l/m)tan-’(mx) (4)

where m is aufficiently large (Kanwal
1983). Alternatively, normal cumulative
distribution functions with sufficiently
small etenderd deviations may be used.

3. GENSRALIZSD MELNIKOV FUNCTION (GMF)

The GMF may be used to obtain a simple
criterion guaranteeing that ax.itsfrom a
wall cannot occur. It can also be used to
estimate a transport-time index. The index
is a lower bound for the mean exit time,
and can be used to estimate a lower bound
for the probability that exits from a well
will not occur within a specified time
interval.

3.1 Expraasion for the Melnikov function

The GMF ia defined by the expression

(5)

where &, is che ordinate in Che x, ~ phase

plane of the unperturbed system’s
homoclinic orbit, and the filter in the
convolution integral of Eq. 5 is h(t) -
~,(-t) (Frey and Simiu 1993b). ‘Thetheorem
that proves persistence under Smsll
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Fig. 1. Function F(t) for to - 1.

perturbation of the unperturbed system’s
saddle point requires G(t) to be
sufficientlysmooth. However, in practice
this requirement may be relaxed. To show
thisG(t) may be approximated in terms of
well-behavedfunctions, e.g., the functions

% (Eq. 3), where m is sufficiently large
for the errors in the representation of
G(t) to be negligible. A similar approach
was demonstrated in some detail in (Frey
and Simiu 1993b).
Equation 5 is valid for the case of

additivenoise. If in Eq. 1 multiplicative
noise f(x,i)G(t) is considered instead of
the additive noise yG(t), then M(t) is
obtainedsimply by replacing in Eq. 5 the
filterh(t)-x,(-t) by the filter

hi(t)- f%(-t)f(x,(-t),i.(-t)) (6)

(Simiu& Fray 1994).
For the Duffing oscillator (Eqs. 1 and 2)

k,(t)-(2)ij2sech(t)tanh(t) (7)

and the GMF is

M(t)-4#/3 + (2)112yF(t) (8)

1
F(t)=X~(-sech[ (ti)to-t]+sech[(n+a-l)to-t])

n-l
(9)

where 2 is sufficiently large for the error
due to the assumption that I is fin,iteto
be negligibly small.
A realization of the random process F(t)

is represented in Fig. 1 for to-l. For this
case the standard deviation of F(t),
obtained from Eqs. 8 and 9, is c#l.772.
For tO-3.14, UP-O.962. Note that

M(t)/[(2)1/%] - F(t) - 4fl/[(2)1/27]. (lo)

We refer to the left-hand-side of this
equation as the resealed GMF.

3.2 Criterion guaranteeing non-occurrence
of exits

The area under the curve x’(t) (Eq. 7) in a
half-plane is (2)1)2.It then follows from
the definition of F(t) (Eqa. 5 and 8) that
-2<F(t)<2. (Theprobabilities of occurrence
of noise realizations for which IF(t)1-2
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are zero, but they are non-zero for
IF(t)I-2-6, 641.) By the Smale-Birkhoff
theorem, the necessary condition for chaos
is that M(t) have simple zeros. If

/3/7> 3/(2)1fz- 2.121, (11)

then this condition cannot be satisfied,
and chaotic traneport from one well to the
other cannot occur, no mattar how long the
waiting time. Equation 11 is a stability
criterion applied to a fairly complex
stochaaticnonlineardifferentialequation.
Ite simplicity, in our view, is remarkable.
We recall that this criterion was obtained
by applying to a stochastic equstion a
result of chaotic dynemice theory.

3.3 kwer bound for mean exit time

For efficiently emall c the intersection
with a phase apace slice of the stable and
unstable manifolds exhibits lobes whose
ordinates are, to first order, proportional
to the GMF (Wiggins 1992). A line of
constant ordinate 4p/[3(2)‘tz-l]-0.9428 @/~
in Fig. 1 is the zero line for the reacaled
G14F. ‘fbe countarparte in Fig, 1 of the
entraining lobee (lobes that will cross or
have crossed into the interior of the
pseudoseparatrix) are the small areas
between the zero line of the resealed GMF
and the positive part of the resealed GMF.
The counterparts of the detraining lobes
(lobes that will cross or have crossed into
the exterior of the pseudoseparatrix) are
the relatively large areaa betwaen the zero
line of the resealed GMF and the negative
part of the reacaled GMF. (For details on
entraining and detraining lobes see Beigie,
Leonard and Wiggins 1991). For sufficiently
high ratios @/y the zero upcrossings of the
function M(t) are rare events. We denote
the mean time between those upcrossings by

% and view it as a transpOrt-time index.
On average, the time of transport across
the pseudoseparatrix is, to within a factor
of order one, equal to rh. rh is smaller
than and is therefore a lower bound for the
mean exit time, r.,, corresponding to an
initial position at or near the bottom of a
well.

It is clear from its definition that the
transport-time index is a weak lower bound
for T*X. To illustrate this, consider the
case whare in Eq. 1 G(t) denotes white
noise with autocorrelation equal to the
Dirac delta function, and C-Idenotes the
noise intensity. The mean time between
potential barrier crossings can be ahown to
be

.
rox,m-(4q3/6 )11z(2/7)fexp [-2 P/6/7 zv(x) ldx

-0
(12)

We assume c-O.1, /1-O.1, 7-0.025. For these
valuee r_#0350 .

For white noise excitation the GMF can be
defined by considering excitotion by a
uniform broadband power spectrum from -O
to W<. In the limit of amsll c and large
Ut the standard deviation of the GMF iS 7CZ,
where

0

(13)

and S(w) is the Fourier transform of b(t)
(Frey and Simiu 1993b). The ratio of the
mean to the standard deviation of the GMF
is then k-/31/(Vuz), where I is the value of
the firet integral in the right-hand side
of Eq.5. (For the Duffing equation S(u) -
(2)’%waech(fiw/2), UZ-2(m/3)11~.2,047, and
1-4/3.) The GMF is a Gaussian process, and
the mean uncrossing rate of the thresholdk
is

r~,m - Olexp(CZB2/72) (14)

l/a~-(1/2x)[;@zs2(@)&]/[f;2(u)a#] (15)
0 0

C2-12/(2UZZ)(Rice 1954). For our parameters
r~.~-160, a very weak lower bound indeed.

3.4 Upper bound to probability thst exits
occur during specified time interval

We assume again that the ratio ~/y is
sufficiently high that upcrossings of the
threshold 0.9428 L3/~by the fu)nction F(t)
are rare eventa. The probabili.tythat no
uncrossing occure during a specified time
interval T can be written as

p~exp(-7/rm) (16)

Since rm<r.x, pT is an approximate lower
bound to the probability that exits froma
well will not occur during the time
interval T. For exemple, let to-l and
@/T-l.9. From Fig. 1 rM=165. For T-20, Eq.
17 then yields P+=O.89.

4. NUMERICAL SIMULATIONS

Fieures 2a and 2b show time h:lstoriesOf
the motion for the Duffing equation excited
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Fig. 2. Realizations of stochastic mOtiOns induced by dichotomous noise:
(a) non-chaotic motion; (b) chaotic motion.

by realizations of the dichotomous noise
G(t) with to-l (Eq. 3), and corresponding

the p8rSM@ter5 6-1, /3-0,12, and
1%2.13>2.121 (see Eq. 11), and

fl/y-O.625<2.121.The motion in Fig. 2a is
Confined to one well, as predicted by Eq.
11,and differs from its counterpart in the
harmonicallyexcited Duffing oscillator by
beingirregular, a result of the randomness

of the excitation. ‘I’ha chaotic motion of

Fig, 2b is strikingly similsr to chaotic
motions induced by harmonic or
quasiperiodic excitation. Underlying the
commonality of the stochastic and
deterministic systems is the existence in
both cases of stable and unstable mani~Eolds
whose behavior, assessed by the Melnikov
distance, controls the system behavior.
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Note that, aa for the Duffing equation with
harmonic forcing (Moon, 1987), the
necessary condition for the occurrence of
chaos is helpful in the eearch for chaotic
regions even for relatively large c.
Sensitivity to initial conditions (i.e.,

the positivity of the largest Lyapounov
exponent) was verified numerically for the
motion of Fig. 2b.

5. CONCLUSIONS

We showed that, for a class of second-order
bistable differentialequations, forcingby
dichotomousnoise induces behavior that has
striking similaritieswith behavior induced
by harmonic or quasiperiodic forcing. For
certain regions of parameter apace, both
the stochastic system driven by noisa and
the deterministic system driven
harmonically experience behavior that may
be chaotic or non-chaotic. Non-chaotic
behavior precludes the occurrence of exits
from the potential wells. However, if the
behavior is chaotic, exits from the wells
become possible via the mechanism of
chaotic tranaport by phasa space slice
lobes. A necessary condition for the
occurrence of chaos in the deterministic
and stochastic systems is the existence of
simple zeros in, respectively, the Melnikov
function (which is a deterministic
function) and the GMF (which is a
stochastic process). This parallelism
suggestad extending to our stochastic
differential equations an approach based on
the theory of chaotic dynamics that was
originally daveloped for deterministic
systems. This approach accommodates both
additive and multiplicative noise, and
yields a remarkably simple criterion
guaranteeing tha non-occurrence of exits.
Wa defined a transport-time indax, which is
a weak lower bound to the mean exit time
from a well, and obtained a weak lower
bound to the probability of non-occurrence
of exits during a specified time interval.
We showed that the bounds we obtained are
very weak. In spite of that weakness the
lower bounds may ba useful in some
applications,particularly for the relative

assessment of the effect on chaotic

transport of various faatures of the noise.
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